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Abstract
Huygens’ geometric construction explaining wave motion has a well-known
problem with unphysical back-propagation due to the spherical nature of the
secondary wavelets. We solve this by analytically continuing the surface
of integration. If the surface is a sphere SR of radius R, this is done by
complexifying R to α = R + ia. The resulting complex sphere Sα is shown to
be equivalent to the real tangent disk bundle with base SR consisting of all disks
with radius a tangent to SR. Huygens’ secondary source points are thus replaced
by disks, and his secondary wavelets by well-focused pulsed beams propagating
outward. This solves the back-propagation problem. The generalized Huygens
principle is a completeness relation for these pulsed-beam wavelets enabling
a pulsed-beam representation of all radiation fields. Furthermore, this yields
a natural and extremely efficient way to compute radiation fields numerically
because all pulsed beams missing a given observer can be ignored with minimal
error. Increasing the disk radius a sharpens the focus of the pulsed beams, which
in turn raises the compression ratio of the representation.

PACS numbers: 03.50.De, 41.20.Jb, 42.25.Bs

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Huygens’ principle3 [BC87] states that the solution of the wave equation radiated by a bounded
source can be represented outside the source region as a superposition of spherical Huygens
wavelets radiated by secondary point-sources on a surface enclosing the primary source. This
was originally proposed as an intuitive explanation of wave propagation, but as such it is

3 Also known as the Huygens–Fresnel principle following the important analytical contributions by Augustin Jean
Fresnel complementing Huygens’ geometric construction.
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conceptually problematic because the spherical wavelets propagate equally in all directions,
thus implying that the wave propagates backward (toward the source) as well as forward (away
from the source). We propose a solution to this problem by generalizing the idea of Huygens
wavelets.

Choosing the surface to be the sphere SR of radius R, we show that the Huygens
representation of the exterior wave can be continued analytically to a complex radius α = R+ia.
For any unit vector n̂, the complex vector αn̂ is shown to represent a real disk of radius a
tangent to SR at the point Rn̂. The complex sphere Sα ⊂ C

3 consisting of all such vectors
αn̂ is thus equivalent to a real tangent disk bundle with base SR. Just as the points Rn̂ ∈ SR

radiate spherical wavelets, so do the tangent disks αn̂ ∈ Sα radiate well-focused pulsed-
beam wavelets propagating in the outward direction n̂. The analytically continued Huygens
formula can be given the following real interpretation: the interior wave radiated by the source
is intercepted by the set of tangent disks, which then re-radiate it as a set of outgoing pulsed
beams. The original wave is thus represented in the exterior as a superposition of pulsed beams
emanating from disks tangent to SR, and the coefficients in this superposition are interpreted
as local reception amplitudes by the disks.

The generalized Huygens principle is a completeness relation for pulsed-beam wavelets
enabling a pulsed-beam representation of radiation fields. Since the new wavelets can be
focused by increasing the disk radius a, our construction solves the directionality problem of
Huygens’ construction. Furthermore, it leads naturally to substantial gains in the efficiency of
computing radiation fields numerically. Only pulsed beams propagating toward the observer
need to be included in the expansion, and the rest can be ignored while incurring minimal
errors. This leads to a significantly compressed representation of radiation fields, with the
amount of compression controlled by the disk radius a.

The plan of the paper is as follows. In section 2, we review Huygens’ principle for
time-harmonic waves. In section 3, we introduce the idea of complex distance and show that
the complex sphere SR+ia is equivalent to a bundle of disks of radius a tangent to the real
sphere SR. In section 4, we continue Huygens’ principle for time-harmonic waves analytically
from SR to Sα and show that each disk αn̂ ∈ Sα radiates a beam propagating outward
along the direction of n̂. In section 5, we introduce the Gaussian pulsed-beam propagator,
an analytic extension of the usual propagator representing wave propagation from a disk
to a point, and use it to prove the generalized Huygens principle in the time domain. In
section 6, we investigate the associated pulsed-beam Huygens wavelets. Section 7 consists
of some additional remarks on the pulsed-beam nature of these wavelets. In section 8, we
establish the Huygens reproducing relation for pulsed-beam wavelets, showing that wave
propagation from an emission event xe inside SR to a reception event xr outside SR can
be expressed as an integral of products of pulsed-beam propagators from xe to z and z to
xr, where z is an intermediate event representing interception and re-emission by a disk
αn̂ ∈ Sα . In section 9, we present the generalized Huygens principle for arbitrary sources. In
section 10, we prove that the coefficients in the pulsed-beam representation of a radiation field
are the reception amplitudes of the interior wave by the disks αn̂ ∈ Sα , thus completing the
physical interpretation of the generalized Huygens principle. In section 11, we demonstrate
the numerical advantages of the pulsed-beam representation by confirming that its numerical
compression increases with the disk radius a.

Note that the term ‘wavelets’ is used here in its original meaning related to Huygens’
principle and has no direct connection to the modern concepts of wavelets [K94]. However,
it can be shown that our generalized Huygens wavelets give a time-frequency analysis
specifically adapted to solutions of the wave equation. This connection will be explained
elsewhere.
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2. Huygens principle for time-harmonic waves

Consider a time-harmonic source � of frequency ω supported in a bounded volume V ⊂ R
3:

�(x, t) = Re{e−iωt�ω(x)}, supp �ω ⊂ V.

The wave radiated in free space and observed at the reception event (xr , tr ) is

F(xr , tr ) = Re{e−iωtr Fω(xr )} with Fω(xr ) =
∫

dxGω(xr − x)�ω(x),

where

Gω(r) = eiωr

r
, r = |r| (1)

is the outgoing fundamental solution of the Helmholtz equation:

(∇2 + ω2)Gω(x) = −4πδ(x). (2)

We are using units in which the constant wave propagation speed c = 1, so the wave number
is k ≡ ω/c = ω.

Let S be a smooth surface containing V in its interior. Green’s second identity, combined
with (2), shows that Fω is given in the exterior of S by

Fω(xr ) = − 1

4π

∫
S

dS(x)Gω(xr − x)∂
↔
nFω(x), (3)

where dS is the area measure on S and we have introduced the notation

g(x)∂
↔
nf (x) = g(x)∂nf (x) − ∂ng(x)f (x),

where ∂n is the outward normal derivative at x ∈ S. Equation (3) is a precise expression of
Huygens’ principle as formulated by Kirchhoff [BC87, BW99]. It states that in the exterior
region, Fω(xr ) can be represented as a superposition of the spherical waves Gω(xr − x),
called Huygens wavelets, together with their normal derivatives. Hence, the points x ∈ S

act as secondary sources which collectively form a surface source equivalent to the original
source �ω in the exterior region4.

Equation (3) can be expressed as a condition on the fundamental solution Gω by letting
�ω be a point source

�ω(x) = δ(x − xe),

with xe in the interior of S. Then, Fω(x) = Gω(x − xe); hence, (3) becomes

Gω(xr − xe) = − 1

4π

∫
S

dS(x)Gω(xr − x)∂
↔
nGω(x − xe). (4)

We call (4) the Huygens reproducing relation for Gω. To recover (3), multiply by a general
source density �ω(xe) supported inside S and integrate over xe. We shall generalize Huygens’
principle by continuing analytically in the integration variable x, and for this purpose it will
be more convenient to work with (4) than (3). This will be done in the special case where S is
the sphere of radius R centered at the origin,

SR = {x = Rn̂ : n̂ ∈ S2},
where S2 denotes the unit sphere. Then,

dS(x) = R2 dn̂, where dn̂ = sin θ dθ dφ

4 The equivalent surface source consists of a single layer {Gω∂nf } and a double (dipole) layer {−∂nGω f }.
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Figure 1. The sphere SR, the emission and reception points xe, xr , and the vectors re, rr .

is the area measure on S2; hence, (4) becomes

Gω(r) = −R2

4π

∫
dn̂Gω(rr )∂

↔
R
Gω(re), |xe| < R < |xr |, (5)

where

re = Rn̂ − xe, rr = xr − Rn̂, r = re + rr = xr − xe (6)

as seen in figure 1. The normal derivative ∂n = n̂ ·∇ has been replaced by the partial derivative
∂R, and

Gω(re) = eiωre

re

, re = |re|, ∂Rre = R − n̂ · xe

re

Gω(rr ) = eiωrr

rr

, rr = |rr |, ∂Rrr = R − n̂ · xr

rr

.

(7)

We shall complexify the points Rn̂ of SR by complexifying R and proving that this gives an
analytic continuation of the distances re and rr, hence of the right-hand side in (5). In the next
section, we show that this procedure has a surprising and beautiful geometric interpretation in
real space.

3. The complex sphere as a tangent disk bundle

Let α = R + ia ∈ C with a > 0, and consider the complexifications of (6),

re → ze = αn̂ − xe = re + ian̂, rr → zr = xr − αn̂ = rr − ian̂, (8)

regarded as analytic functions of α. To continue Gω(re) and Gω(rr ) in (5) to C
3, we must

continue the distances re , rr analytically in α. We will first explain the continuation of rr in
detail and then derive the corresponding expressions for re.

The complex distance from αn̂ to xr is defined by

ζr = √
w, where w = zr · zr = r2

r − a2 − 2iarr · n̂. (9)

ζr will be regarded in parallel as an analytic function of zr ∈ C
3 and as a complex function

of xr ∈ R
3 with αn̂ ∈ C

3 fixed. Any analytic function f (xr ) depending only on rr can be
continued analytically to some domain in C

3 by substituting rr → ζr , and we shall regard this
as a deformation

f (xr ) → fαn̂(xr ) ≡ f (xr − αn̂). (10)

4
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Since fαn̂ is analytic in α, this deformation preserves solutions of differential equations such as
(2).5 The deformation breaks the spherical symmetry of rr. Coupled with a similar deformation
of other variables such as re, this will provide a powerful mathematical tool for generating
nontrivial and interesting solutions from simple spherical ones. Furthermore, the singularities
of deformed solutions give rise to their deformed sources [K3].

Being defined in terms of the complex square root, ζr is double-valued. To make it
single-valued, a branch cut must be introduced and a branch chosen. In the complex variable
w ∈ C, we choose the standard branch cut of

√
w along the negative real axis w � 0. But

w � 0 ⇔ {rr � a, n̂ · rr = 0} ⇔ {|xr − Rn̂| � a, n̂ · (xr − Rn̂) = 0};
hence, the branch cut of ζr as a function of xr ∈ R

3 with αn̂ ∈ C
3 fixed is

D(αn̂) = {xr : rr � a, n̂ · rr = 0}
= {xr : |xr − Rn̂| � a, n̂ · (xr − Rn̂) = 0}. (11)

This is the disk of radius a centered at Rn̂ and orthogonal to n̂, i.e. the disk of radius a tangent
to the sphere SR at Rn̂. As a → 0, D(αn̂) shrinks to the one-point set {Rn̂} and ζr → ±rr .
We choose the branch with

Re ζr � 0, so that ζr → rr as a → 0.

Define the real and imaginary parts of ζr by

ζr = ξr − iηr (12)

so that with our choice of branch,

ξr � 0 and Sgnηr = Sgn(rr · n̂)

by (9). Since w � 0 onD(αn̂), ζr is imaginary there; hence, the branch cut can be characterized
as

D(αn̂) = {xr : ξr = 0}. (13)

Choosing cylindrical coordinates (ρ, φ, z) with the origin at Rn̂ and the z-axis along n̂, (9)
and (12) give

r2
r − a2 = ξ 2

r − η2
r and an̂ · rr = az = ξrηr;

hence,

a2ρ2 = a2r2
r − a2z2 = a2

(
a2 + ξ 2

r − η2
r

) − ξ 2
r η2

r = (
a2 + ξ 2

r

)(
a2 − η2

r

)
.

Thus, (ξr , ηr) are related to the cylindrical coordinates (ρ, z) by

aρ = √
a2 + ξ 2

r

√
a2 − η2

r , az = ξrηr . (14)

This implies the following important inequalities:

−a � ηr � a and 0 � ξr � rr , (15)

where the second one follows from ξ 2
r = r2

r − (
a2 − η2

r

)
. Also by (14),

ρ2

a2 + ξ 2
r

+
z2

ξ 2
r

= 1 and
ρ2

a2 − η2
r

− z2

η2
r

= 1.

5 We shall extend this idea to spacetime, where it applies, in particular, to solutions of the wave equation and
Maxwell’s equations.
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Figure 2. The real and imaginary parts of ζr = ξr − iηr form an oblate spheroidal coordinate
system in R

3 centered at xr = Rn̂ with the z-axis along n̂. The third coordinate is φ, the standard
azimuthal angle. The above plot shows cut-away views of an oblate spheroid Oξr with ξr = 0.7a,
a semi-hyperboloid Hηr with ηr = 0.8a (z > 0) and another with ηr = −0.5a (z < 0). Also
shown is the focal circle ∂D(αn̂) with radius a, whose interior is the branch disk D(αn̂).

This proves that the level surfaces of ξr and ηr are

Oξr
=

{
xr :

ρ2

a2 + ξ 2
r

+
z2

ξ 2
r

= 1

}
, ξr > 0

Hηr
=

{
xr :

ρ2

a2 − η2
r

− z2

η2
r

= 1, zηr � 0

}
, 0 < η2

r < a2.

(16)

The level surfaces of ξr are the oblate spheroids Oξr
and those of ηr are the semi-hyperboloids

Hηr
. The restriction zηr � 0 follows from az = ξrηr and ξr > 0. As ξr → 0, Oξr

shrinks
to the branch disk D(αn̂) (13). It can be shown [K3] that the families Oξr

and Hηr
are

mutually orthogonal, forming an oblate spheroidal coordinate system deforming the spherical
coordinates (rr , θr , φr). They all share a common focal circle6, which is the boundary of the
branch disk:

∂D(αn̂) = {xr : rr = a, n̂ · rr = 0} = {xr : ζr = 0}. (17)

The last equality shows that ∂D(αn̂) is the set of all branch points of ζr . Whereas f (w) = √
w

has a branch point at w = 0, ζr(xr ) =
√

(xr − αn̂)2 has a branch circle. Figure 2 shows
∂D(αn̂) and examples of Oξr

and Hηr
.

Since (−zr )
2 = z2

r , ζr is even as a function of zr ∈ C
3. However, it is not even as a

function of rr alone. Instead, we have

ζr(−rr − ian̂) = ζr(rr + ian̂) = ζr(rr − ian̂)∗.

The last relation is a reality condition or Hermiticity property on the complex function ζr(zr ),
and it requires our choice of branch cut ξr � 0:

ζr(z
∗
r ) = ζr(zr )

∗. (18)

We now use this to define the analytic continuation of re by

ζe =
√

(re + ian̂)2 = (
√

(re − ian̂)2)∗ = (ξe − iηe)
∗ = ξe + iηe.

6 Its physical significance is that it consists entirely of focal points of both Oξr and Hηr .
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Figure 3. The complex point αn̂ represents the real disk D(αn̂) tangent to the sphere SR at
Rn̂. The complex distances ζe (from xe to D(αn̂)) and ζr (from D(αn̂) to xr ) are depicted
schematically, emphasizing their directed nature as explained in the text.

This shows that ζe and ζr are directed distances. Their sign difference indicates that αn̂ is a
receiver for the wave propagating from xe and an emitter for the wave propagating to xr , as
illustrated in figure 3. The sign difference is significant because the two sides of D(αn̂) have
opposite orientations.

As functions of xe for fixed αn̂ ∈ C
3, ξe and ηe have the same properties as ξr and ηr

except that the z-axis is now along −n̂ due to the opposite orientation of D(αn̂). For example,
the level surfaces of ξe are oblate spheroids and those of ηe are semi-hyperboloids with

ξe � 0, Sgn ηe = Sgn(n̂ · re).

However, it is clear from figure 1 that while ηr can have any value in [−a, a], every emission
point xe in the interior of SR must have

n̂ · re > 0; hence 0 < ηe � a.

It can be shown that the exact bounds on ηe as n̂ varies over S2 are

γ a � ηe � a, where γ =
√

1 − |xe|2
|α|2 . (19)

It is clear that γ can depend only on |xe| since the minimum of ηe must be spherically
symmetric. In particular,

0 � |xe| < R ⇒ 0 < γ � 1, γ0 ≡ lim
|xe|→R

γ = a√
R2 + a2

< 1 (20)

and

xe = 0 ⇒ ηe = a for all n̂,

which is obvious since xe = 0 ⇒ ze = αn̂ ⇒ ζe = α ⇒ ξe = R, ηe = a. The functions
ηr and ηe will play an important role, and it is helpful to interpret them geometrically. From
(16), it follows that Hηr

is asymptotic to the cone Cϑr
making an angle ϑr with the positive

z-axis and Hηe
is asymptotic to the cone Cϑe

making an angle ϑe with the negative z-axis,
where

a cos ϑr = ηr and a cos ϑe = ηe. (21)

7
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Figure 4. The semi-hyperboloids Hηr (above) and Hηe (below) for ηr = 0.9a and ηe = 0.5a. Also
shown are the asymptotic cones Cϑr , Cϑe and the focal circle ∂D(αn̂). The cones make angles ϑr

and ϑe with n̂ and −n̂, respectively, given by (21). The Huygens relation in the time domain will
favor pulsed beams with ηr > ηe , which means that the wave is focused into narrower propagation
hyperboloids Hηr (asymptotic to the diffraction cones Cϑr ) upon being received along Hηe and
re-emitted by D(αn̂).

See figure 4. Hence, (19) can be restated as

0 � ϑe � sin−1 |xe|
|α| , (22)

while 0 � ϑr � π .
The parameters ϑr, ϑe are deformations of the spherical coordinates θr , θe of rr , re. A

similar interpretation exists for ξr and ξe as deformations of the radial coordinates rr , re: the
oblate spheroid Oξr

containing xr is tangent to the sphere Sξr
of radius ξr at the north and

south poles, and the same goes for Oξe
and Sξe

; this explains why ξr � rr and ξe � re. These
observations provide a complete real geometric interpretation of the complex distances ζr and
ζe in R

3. As an intuitive aid to understanding the idea, think of ζr as the ‘distance’ between the
disk D(αn̂) and the point xr . Its complex nature reflects the fact that no single real number
can characterize this distance, and that the distances from xr to points on D(αn̂) depend on
the inclination of the disk, which can be parameterized by ϑr or ηr . Hence, ζr is not spherically
symmetric, like rr, but cylindrically symmetric around n̂.

The functions ξr , ηr simplify if the observer is far from the disk:

rr � a ⇒ ζr =
√

r2
r − a2 − 2iarr · n̂ ∼ rr − iar̂r · n̂

⇒ ξr ∼ rr , ηr ∼ a cos θr where cos θr ≡ r̂r · n̂. (23)

8
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In particular, note that ϑr ∼ θr as expected. Hence, the spheroids Oξr
can be approximated by

the spheres Srr
and the semi-hyperboloids Hηr

by their asymptotic cones Cϑr
. The deformed

variables (ξr , ϑr) are thus restored to their original values (rr , θr ). On the other hand, if the
observer is far from the sphere, then

|xr | � R ⇒ rr = |xr − Rn̂| ∼ |xr | − Rx̂r · n̂.

The far-zone approximation assumes that the observer is far from both the disk and the sphere,
which can be stated succinctly as follows:

|xr | � |α| ⇒ ζr =
√

|xr |2 + α2 − 2αxr · n̂ ∼ |xr | − αx̂r · n̂

or

|xr | � |α| ⇒ ξr ∼ rr ∼ |xr | − R cos θr and ηr ∼ a cos θr . (24)

In the engineering literature [N86], the set

Sα = {αn̂ ∈ C
3 : n̂ ∈ S2} (25)

is called the complex sphere7 of radius α in C
3. The correspondence

αn̂ ∈ C
3 ↔ D(αn̂) ⊂ R

3 (26)

establishes a complete equivalence between complex points and real disks (where a ‘disk’ with
radius a = 0 is by definition a point). Under this equivalence, Sα corresponds to the set of all
disks of radius a tangent to SR, which is a tangent disk bundle with base SR:

Ta(SR) = {D(αn̂) : n̂ ∈ S2}, α = R + ia. (27)

4. Generalized principle for time-harmonic waves

We can now continue (4) to complex space by extending (7) to

G̃ω(ze) = eiωζe

ζe

, ze = αn̂ − xe, ζe = √
ze · ze

G̃ω(zr ) = eiωζr

ζr

, zr = xr − αn̂, ζr = √
zr · zr .

(28)

If the observer is far from the disk, (23) gives

rr � a ⇒ G̃ω(zr ) ∼ eiωrr

rr

eωa cos θr , (29)

where we have used ζr ∼ rr − ia cos θr ∼ rr in the denominator. Thus G̃ω, viewed as a
function of rr ∈ R

3, has a radiation pattern [HY99]

Fω(θr) = eωa cos θr .

For ω > 0, this is the pattern of a beam propagating in the direction of n̂, while for ω < 0
the beam propagates in the direction of −n̂. The larger ωa,8 the sharper the beam. Note
further that these beams are very special in that they have no sidelobes. That makes them
especially useful in applications such as communications and remote sensing. Analyticity in
zr combines with (2) to give(∇2

r + ω2
)
G̃ω(xr − αn̂) = 0 when xr /∈ D(αn̂), (30)

7 The term would be more appropriately applied to S̃α = {z ∈ C
3 : z · z = α2}. Since Sα has real dimension 2 for

α �= 0 while S̃α has real dimension 4 (complex dimension 2), Sα is a proper subset of S̃α .
8 Recall that c = 1, so ωa = ka = 2πa/λ where k is the wave number and λ is the wavelength. Thus, ωa can be
interpreted as the number of wavelengths in the circumference of ∂D(αn̂).

9
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where ∇2
r is the Laplacian with respect to xr . This proves that the disk D(αn̂) is the source of

the beam. Just as the Huygens wavelet Gω(xr −Rn̂) is radiated by a point source δ(xr −Rn̂)

at xr = Rn̂, as seen from (2), so is the beam G̃ω(xr −αn̂) radiated by the branch disk D(αn̂).
This will be made more precise later, in the time domain. In the limit a → 0, G̃ω(xr − αn̂)

becomes the spherical wavelet Gω(xr − Rn̂).
This method of deforming spherical time-harmonic waves to beams was first introduced

by Deschamps [D71] and has become very popular in the engineering literature under the
name complex-source beams, i.e. beams due formally to a ‘point source’ in C

3, in our case
αn̂, but interpreted physically as a real disk [KS71, F76, C81, F82]. Solutions to scattering
problems where the incident field is a complex-source beam are readily obtained by analytically
continuing solutions with a spherical incident field [CH89]. Complex-point receivers were
first introduced in [ZSB96] to model directed electroacoustic transducers in ultrasonics, and
they have subsequently proven useful in cylindrical and spherical near-field scanning for both
acoustic and electromagnetic fields [H6, H9, H9A].

An earlier application of complex distance was made in General Relativity by Ted Newman
and his collaborators [NJ65, N65], who used it to give simple derivations of spinning black
holes with and without charge (Kerr and Kerr–Newman solutions) by deforming known
spherically symmetric solutions through analytic continuation9.

However, none of the above works actually compute the source of G̃ω. This is not trivial
because the singularities of G̃ω on D(αn̂) are complicated by the branch cut: G̃ω is infinite on
the focal circle ∂D(αn̂), where ζr = 0, and discontinuous on its interior. In [K3], the source
δ̃ω of G̃ω is defined by extending (2) and (30) to

4πδ̃ω(xr − αn̂) ≡ −(∇2
r + ω2)G̃ω(xr − αn̂), (31)

where ∇2
r is the distributional Laplacian with respect to xr . It is proved that δ̃ω is a generalized

function supported on xr ∈ D(αn̂). In [K4a], it is shown that the analytically continued
Coulomb potential

�̃ = 1

ζ
, z = x − ia ∈ C

3, ζ = √
z · z

generates a real electromagnetic field (E,H) in the complex-analytic form

−∇�̃ = E + iH,

which in turn identifies its source D(a) as a spinning charged disk whose boundary moves at
the speed of light. This is the flat-space version of the Kerr–Newman black hole, studied from
a different viewpoint by Newman in [N73]. This analysis is generalized to higher dimensions
in [K0], where a rigorous connection between solutions of Laplace’s equation in R

n+1 and the
wave equation in R

n,1 (Minkowski space with n space dimensions plus time) is established,
generalizing earlier work by Garabedian [G64].

We are now ready to state and prove the analytic Huygens principle for time-harmonic
waves.

Theorem 1. For given emission and reception points xe,xr with |xe| < |xr |, the Huygens
reproducing relation (5) extends analytically to complex R in the open set

A = {α ∈ C : Re α > |xe|, |α| < |xr |}, α = R + ia. (32)

9 The first derivation of a cylindrically symmetric solution of Einstein’s equation was given by Roy Kerr in 1963
[K63]. It was very complicated, which explains why it had taken 48 years to generalize Karl Schwarzschild’s spherical
solution. Newman’s derivation, based on the complex distance, was a model of simplicity.

10
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For α ∈ A, it states that

Gω(xr − xe) = − α2

4π

∫
dn̂G̃ω(xr − αn̂)∂

↔
α
G̃ω(αn̂ − xe) (33)

or

eiωr

r
= − α2

4π

∫
dn̂

eiωζr

ζr

∂
↔
α

eiωζe

ζe

, r = |xr − xe|. (34)

Proof. Write (33) as

L = R(α),

where the left-hand side L is independent of α as noted. This reduces to (5) for α = R with
|xe| < R < |xr |. The right-hand side R(α) is analytic as long as neither xe nor xr belongs to
any of the branch disks D(αn̂). But the union of all these branch disks is the spherical shell

Sa
R =

⋃
n̂∈S2

D(αn̂) = {x ∈ R
3 : R � |x| �

√
R2 + a2 = |α|}; (35)

hence, xe must be in the interior of Sa
R and xr in its exterior. This means that R(α) is analytic

in A, and since it is constant on the line segment A ∩ R, it must be constant throughout A. �

Equation (33) can be interpreted physically as follows: G̃ω(αn̂ − xe) is the reception
amplitude by the disk D(αn̂) of the wave emitted by xe, which in turn stimulates the emission
of the complex-source beam G̃ω(xr −αn̂) propagating to xr . The spherical wave Gω(xr −xe)

from xe to xr is thus represented as a sum of beams.
Equation (34) can be further simplified by letting

ζe(α) =
√

(αn̂ − xe)2 and ζr(α
′) =

√
(xr − α′n̂)2 (36)

with α and α′ independent. Then,

eiωr

r
= α2

4π
∂α′α

∫
dn̂

ζrζe

eiω(ζr +ζe), (37)

where

∂α′α = {∂α′ − ∂α}|α′=α.

Applying the derivatives gives a version of (37) more suitable for numerical computations:

eiωr

r
= α2

4π

∫
dn̂

ζrζe

[
iω(ζ ′

r − ζ ′
e) − ζ ′

r

ζr

+
ζ ′
e

ζe

]
eiω(ζr +ζe), (38)

where

ζ ′
e ≡ ∂αζe = α − n̂ · xe

ζe

, ζ ′
r ≡ ∂α′ζr = α′ − n̂ · xr

ζr

. (39)

Let us note a symmetry of (37). Since the left-hand side satisfies the Fourier transform
reality condition f̂ (−ω)∗ = f̂ (ω), so must the right-hand side; thus,

eiωr

r
= α∗2

4π
∂α′∗α∗

∫
dn̂

ζ ∗
r ζ ∗

e

eiω(ζ ∗
r +ζ ∗

e ). (40)

The branches defined by Re ζe � 0 and Re ζr � 0 satisfy the reality conditions (18)

ζe(α)∗ = ζe(α
∗) and ζr(α

′)∗ = ζr(α
′∗);

11
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hence, the right-hand side of (40) is simply (37) with α → α∗ and α′ → α′∗. Since the set A

(32) is symmetric under complex conjugation, this explains why (40) and (37) are consistent.
That is, the right-hand side of (37) satisfies the extended reality condition

f̂ (−ω, α∗)∗ = f̂ (ω, α). (41)

Equation (33) implies that the field radiated by an arbitrary source �ω(xe) supported in SR is

Fω(xr ) = α2

4π
∂α′α

∫
dn̂G̃ω(xr − α′n̂)F̃ω(αn̂), (42)

where

F̃ω(αn̂) =
∫

dxeG̃ω(αn̂ − xe)�ω(xe) (43)

is the analytic continuation of the radiated field Fω(Rn̂) from SR to Sα . F̃ω(αn̂) can be
interpreted as the reception amplitude of the radiation field by the disk D(αn̂) [ZSB96].
See also section 10, where this is proved in the time domain using a rigorous definition of
pulsed-beam sources. Thus, (42) has a simple physical interpretation: the field radiated by �ω

is intercepted by D(αn̂) and re-radiated by D(α′n̂) to give an identical field in the exterior,
showing that �ω can be replaced by an equivalent source on the tangent disk bundle Ta(SR)

given in (27).
Equation (42) gives the field radiated by �ω as a superposition of the complex-source

beams G̃ω(xr − αn̂) with source points αn̂ ∈ Sα . The first exact representation of this
type was obtained by Norris [N86], who expressed the field of a single real point source
at the origin in terms of complex-source beams emanating from a sphere centered at the
origin. Heyman [H89] translated Norris’ result into the time domain using the analytic-signal
(positive-frequency) Fourier transform. Norris and Hansen subsequently generalized the result
to arbitrary bounded sources, both in the frequency domain [NH97] and time domain [HN97].

However, the representations [NH97, HN97] are very different from (42). They express
the weights of the complex-source beams in terms of the spherical-harmonic expansion
coefficients of �ω, which requires only the field and not its normal derivative. On the other
hand, since each of these coefficients involves an integration of the field over the entire sphere,
it is not possible to express the weight of the complex-source beam emanating from αn̂ in terms
of the incident field at that point, as in (42). Hence, the expansions in [NH97] and [HN97] are
nonlocal, and consequently they do not have a straightforward physical interpretation like the
one above.

An electromagnetic analog of (42) has been published in [TPB7] and used in [TPB7A] to
accelerate the method of moments.

The representations (33) and (42) can be further generalized to surfaces S other than
spheres. It need not even be assumed that the source disks represented by the points of the
analytically continued surface S̃ must be tangent to S. However, this more general analytic
continuation is more difficult than extending a single parameter like R. It does not work for
all ‘regular’ surfaces10 for which a real Huygens representation holds because the integral
expression is not necessarily analytic in a sufficiently large domain. To obtain an analytic
continuation for a surface S, it is necessary to ensure that (a) the integration avoids all branch
cuts, and (b) the area measure of S, which involves a Jacobian, can be continued analytically.
These topics will be considered in future work.

10 A regular surface is defined by Kellogg [K67]; see also [HY99, chapter 2].

12
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Figure 5. Decomposition (47) with R = 5, a = 1,xe = (0, 0, 2.5),xr = (20, 0, 0). The dark
region (closest to xr ) is S+

R and the light region is S−
R .

5. Generalized principle in the time domain

Care must be taken when transforming (37) to the time domain because the integrand can
grow exponentially in ω. Letting

ζ = ζr + ζe = ξ − iη, ξ = ξr + ξe, η = ηr − ηe, (44)

the exponential in (37) is

eiωζ = eiωξ eωη. (45)

Setting α′ = α (as it will be after applying ∂α′α), (19) shows that the bounds on η, as n̂ varies
with xe fixed, are

−2a � η � (1 − γ )a where γ =
√

1 − |xe|2
R2 + a2

. (46)

The upper bound of η is therefore positive whenever xe �= 0. This divides the sphere SR into
the subsets

S+
R(xe,xr ) = {Rn̂ : ηr > ηe}, S−

R (xe,xr ) = {Rn̂ : ηr � ηe} (47)

shown in figure 5.
As indicated, these sets depend on xe and xr . We call S+

R the frontal zone and S−
R the rear

zone of SR for the given emission and reception points xe,xr . Note that the maximal value
ηe = a is attained when xe is in the direction of −n̂, i.e.

ηe = a ⇒ xe = −|xe|n̂, (48)

which gives the weakest contribution. This is a result of the opposite orientations of the
reception and emission disks.

To obtain the time-domain version of (37) choose a signal g(t), multiply both sides by
ĝ(ω) and take the inverse Fourier transform. Formally, this gives

g(t − r)

r
= α2

8π2
∂α′α

∫
dn̂

ζrζe

∫ ∞

−∞
dω e−iω(t−ζ )ĝ(ω), (49)

where we have exchanged the order of integration on the right-hand side, which is justified
if the double integral converges absolutely. If g is real, it suffices to compute its positive-
frequency component and then take the real part. The positive-frequency component of g(t)

is called its analytic signal:

g̃(t) = 1

2π

∫ ∞

0
dω e−iωt ĝ(ω), ˆ̃g(ω) = H(ω)ĝ(ω), (50)

13
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where H(ω) is the Heaviside step function. Taking the complex conjugate and using the
reality condition ĝ(ω)∗ = ĝ(−ω) gives the negative-frequency component,

g̃(t)∗ = 1

2π

∫ ∞

0
dω eiωt ĝ(−ω) = 1

2π

∫ 0

−∞
dω e−iωt ĝ(ω);

hence,

g(t) = 2 Re g̃(t). (51)

If ĝ(ω) decays sufficiently rapidly as ω → ∞, then the integral

g̃(τ ) = 1

2π

∫ ∞

0
dω e−iωτ ĝ(ω), τ = t + is (52)

defines an analytic function of the complex time τ . The domain of analyticity depends on the
decay properties of ĝ. Formally, the positive-frequency part of (49) is therefore

g̃(t − r)

r
= α2

4π
∂α′α

∫
dn̂

ζrζe

g̃(t − ζ ) (53)

provided the integral (52) defining g̃(t − ζ ) converges absolutely for all n̂. Of special interest
is the impulse

g(t) = δ(t) ⇒ ĝ(ω) ≡ 1 ⇒ g̃(τ ) = 1

2π iτ
, s < 0.

The integral converges to the Cauchy kernel for s < 0 and diverges for s > 0. The choice
g(t) = δ(t) is very attractive since

δ(t − r)

r
≡ P(x, t) (54)

is the retarded wave propagator, the unique causal fundamental solution of the wave equation:

�P(x) ≡ (∂2
t − ∇2)P (x) = 4πδ(x), x = (x, t), (55)

where P represents the wave radiated by the point source δ(x) at the origin of spacetime. It is
‘fundamental’ because it generates the field radiated by a general source � through

F(xr) =
∫

d4xeP (xr − xe)�(xe) ⇒ � F(x) = 4π�(x). (56)

Thus, if we could obtain a pulsed-beam expansion for P, this would immediately give a similar
expansion for all radiation fields F. However, it turns out that the divergence of (52) for s > 0
makes this task very difficult. Equation (53) requires

g̃(t − ζ ) = g̃(t − ξ + iη)

both when ηr � ηe and when ηr > ηe. Numerical experiments have shown that while (53)
‘almost’ works with the Cauchy kernel, there is always a small but critical failure interval
T = [t1, t2] where it fails to converge.

Note that disks are ideal for radiating beams (hence we have dish antennas) and recall that
each point on SR represents a tangent disk of radius a. Thus it is reasonable to try constructing
a compressed representation of radiation fields by boosting contributions from the frontal zone
S+

R , where ηr > ηe, and suppressing contributions from the rear zone S−
R , where ηr � ηe.

The main contributions to (53) then come from the frontal zone, and this justifies the name
‘compression.’

However, the Cauchy kernel does this too well: it not only boosts contributions from
the frontal zone, but makes them infinite, thus destroying our representation. We shall solve
this problem with an elegant regularization which behaves naturally with respect to spacetime

14
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convolutions. This is very important because Huygens’ principle is based on spacetime
convolutions, as we shall see. Let

gd(t) = e−t2/d2

√
π d

, d > 0. (57)

This is the Gaussian distribution with standard deviation σ = d/
√

2. Although it seems that
generality is lost by specializing to gd, this is actually not the case because

d → 0 ⇒ gd(t) → δ(t). (58)

Therefore, every continuous signal can be expressed as the limit of a superposition of translated
versions of gd:

g(t) = lim
d→0

∫ ∞

−∞
dt ′g(t ′)gd(t − t ′).

In this sense, gd(t) and its translates form a generalized ‘basis’ for signals. Define the Gaussian
wave propagator

Pd(x) = gd(t − r)

r
, x = (x, t), r = |x|. (59)

By (58), Pd converges to the retarded wave propagator as d → 0:

lim
d→0

Pd(x) = δ(t − r)

r
= P(x). (60)

Its source is a ‘Gaussianized’ version of δ(x):

�Pd(x) = 4πgd(t)δ(x) ≡ 4πδd(x), lim
d→0

δd(x) = δ(x). (61)

Just as P generates all radiation fields F by (56), so does Pd generate their Gaussianized
versions:

Fd(xr) ≡
∫

d4xePd(xr − xe)�(xe), lim
d→0

Fd(x) = F(x), (62)

whose source is a Gaussianized version �d of �:

� Fd(x) = 4π

∫
d4xeδd(xr − xe)�(xe) ≡ 4π�d(x), lim

d→0
�d(x) = �(x).

The Fourier transform of gd(t) is

ĝd (ω) = e−d2ω2/4;
thus,

gd(t) = 1

2π

∫ ∞

−∞
dω e−iωt e−d2ω2/4. (63)

Both sides extend analytically to the whole complex time plane, giving a Fourier representation
of the entire-analytic function gd(τ ):

1

2π

∫ ∞

−∞
dω e−iωτ e−d2ω2/4 = e−τ 2/d2

2π

∫ ∞

−∞
dω e−(dω/2+iτ/d)2

= e−τ 2/d2

√
πd

= gd(τ ).

The positive-frequency part of gd is

g̃d (τ ) = 1

2π

∫ ∞

0
dω e−iωτ e−d2ω2/4 = e−τ 2/d2

2π

∫ ∞

0
dω e−(dω/2+iτ/d)2

. (64)
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Figure 6. The error function erf (s/d), here plotted with d = 2, is a smoothed version of Sgn s to
order d. As d → 0, erf (s/d) → Sgn (s).

Thus,

g̃d (τ ) = 1

2
erfc(iτ/d)gd(τ ) = w(−τ/d)

2
√

πd
, (65)

where

erfc(iτ/d) = 2√
π

∫ ∞

iτ/d

du e−u2 = 1 − erf(iτ/d)

is the complementary error function and w is the Faddeeva function [AS70]. Since both gd

and erfc are entire, so is g̃d . Define the function

H̃d(s − it) = H̃d(−iτ) ≡ 1

2
erfc(iτ/d),

so that

g̃d(τ ) = H̃d(−iτ)gd(τ ). (66)

As illustrated in figure 6, erf (s/d) is a smoothed version of Sgn (s):

erf(s/d) ≡ 2√
π

∫ s/d

0
du e−u2 ∼ Sgn(s), lim

d→0
erf(s/d) = Sgn(s)

and the smoothing is of order d, meaning that

s < −d ⇒ erf(s/d) ≈ −1 and s > d ⇒ erf(s/d) ≈ 1.

Since
1 + Sgn(s)

2
= H(s) =

{
1, s > 0
0, s < 0

is the Heaviside step function and

2H̃d(s − it) = 1 − erf(iτ/d) = 1 + erf((s − it)/d),

H̃d(s − it) is the analytic continuation of a smoothed version of H(s) with

lim
d→0

H̃d(s) → H(s).

Again the smoothing is of order d:

s � −d ⇒ H̃d(s) ≈ 0 and s � d ⇒ H̃d(s) ≈ 1. (67)
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Figure 7. Plot of |H̃d (s − it)|, shown from the side (left) and from below (right), where it is seen
to be an approximation to a smoothed version of H(s) for |s| > |t | and have exponential growth
for |t | > |s|. The smoothing is of order d and the spikes along s = |t | are zeros. The phase of H̃d

is color-coded on the surface representing its modus.

For small d, |H̃d(s − it)| is remarkably close to H(s) when |s| > |t |. This can be seen in
figure 7.11

Furthermore, since

erf(iτ/d) + erf(−iτ/d) ≡ 0 ⇒ erfc(iτ/d) + erfc(−iτ/d) ≡ 2,

H̃d extends analytically the partitioning property H(s) + H(−s) ≡ 1:

H̃d(−iτ) + H̃d(iτ) ≡ 1. (68)

Since gd(τ ) is even, (66) and (68) imply

g̃d (τ ) + g̃d(−τ) = gd(τ ). (69)

But

gd(t + is) = e(s2−t2)/d2

√
π d

e−2ist/d2 = gd(t) es2/d2
e−2ist/d2; (70)

hence, gd(t + is) grows exponentially when |s| > |t | and decays exponentially when |t | > |s|.
The factor H̃d(−iτ) in (66) suppresses the negative cone s < −|t |, thus making g̃d(t + is)
small everywhere outside the positive cone s > |t |. This is illustrated in figure 8.

More precisely, the continuous-fraction expression [AS70, 7.1.4] for erfc implies that

|τ | → ∞, s < 0 ⇒ g̃d (τ ) ∼ 1

2π iτ
;

hence, by (69)

|τ | → ∞, s < 0 ⇒ g̃d (−τ) ∼ gd(τ ) − 1

2π iτ
.

The substitution τ → −τ gives

|τ | → ∞, s > 0 ⇒ g̃d (τ ) ∼ gd(τ ) +
1

2π iτ
,

and the two estimates can be combined into one that will be very useful12,

|τ | → ∞ ⇒ g̃d(τ ) ∼ H(s)gd(τ ) +
1

2π iτ
. (71)

11 We thank David Park for generating this very informative plot using his Presentations Package for Mathematica
http://home.comcast.net/-djmpark/Mathematica.html.
12 Equation (71) is valid for s = 0, since gd(t) → 0 as |t | → ∞.
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Figure 8. Plots of |gd(t + is)| (left) and |g̃d (t + is)| (right) with d = 1. gd grows exponentially in
the double cone |s| > |t | and decays exponentially in the double cone |t | > |s|, while g̃d grows
exponentially in the single cone s > |t | and decays elsewhere. The dimples in g̃d are zeros of
erfc (iτ/d) (see figure 7) and the phases of gd and g̃d are color-coded on the surfaces representing
their moduli (see footnote 11). This shows the oscillation at the compression frequency (83) in the
plot of gd(τ ) and its perturbed version (due to the complex factor H̃d (−iτ)) in the plot of g̃d (τ ).

Figure 9. The real part (left) and imaginary part (right) of g̃d (t +is) with d = 2 and s = 8, together
with their envelopes.

The ‘small’ value of g̃d(τ ) in the region s < |t | for large |τ | is therefore the Cauchy kernel.
Note that

g̃d (−τ) = 1

2π

∫ ∞

0
dω eiωτ e−d2ω2/4 = 1

2π

∫ 0

−∞
dω e−iωτ e−d2ω2/4 (72)

is the analytic continuation of the negative-frequency part g̃d (t)
∗ of gd(t), as is also clear

from (69).
Equation (66) is remarkable. It shows that H̃d(−iτ) projects out exactly the positive-

frequency part of gd(τ ) by multiplication in the complex time domain, precisely as does H(ω)

through (50) in the frequency domain.
Figure 9 shows the real and imaginary parts of g̃d(t + is) as functions of t with d = 2

and s = 8. They are very similar to those of the real and imaginary parts of gd(t + is) (70).

With g = gd , the positive-frequency analytic Huygens relation (53) converges absolutely:

g̃d (t − r)

r
= α2

4π
∂α′α

∫
dn̂

ζrζe

g̃d(t − ζ ). (73)
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By (51), the Gaussian wave propagator (59) is given by

Pd(x) = gd(t − r)

r
= 2Re

{
α2

4π
∂α′α

∫
dn̂

ζrζe

g̃d(t − ζ )

}
. (74)

Carrying out the differentiations in (73) gives an expression more suitable for computations:

g̃d(t − r)

r
= α2

4π

∫
dn̂

ζrζe

[
ζ ′
e

ζe

− ζ ′
r

ζr

+ (ζ ′
e − ζ ′

r )∂t

]
g̃d(t − ζ ), (75)

where ζ ′
r = ∂αζr and ζ ′

e = ∂αζe, as in (39) after setting α′ = α. The derivative ∂τ g̃d(t − ζ ) is
easily computed. Since

∂τ H̃d(−iτ) = 1√
π

∂τ

∫ ∞

iτ/d

du e−u2 = eτ 2/d2

i
√

πd
and ∂τgd(τ ) = −2τ

d2
gd(τ ),

we have

∂τ g̃d(τ ) = gd(τ )∂τ H̃d(−iτ) + H̃d(−iτ)∂τ gd(τ ) = −2τ

d2

{
g̃d(τ ) − 1

2π iτ

}
. (76)

Note that

|τ | → ∞ with |t | > s ⇒ ∂τ g̃d(τ ) = O(τ−2)

because the Cauchy kernel is canceled by (71) and the next term in the asymptotic expansion
of g̃d(τ ) is O(τ−3). Inserting this into (75) and using (39) gives an expression without any
derivatives, ideal for numerical computations.

We shall now interpret (74) as a representation of Pd by a sum of pulsed-beam wavelets
radiated by the disks D(αn̂) tangent to the sphere SR. It suffices to work with the positive-
frequency part (73). Recall that

x = xr − xe = (xr − xe, tr − te) = (x, t)

represents the spacetime 4-vector from the emission event xe to the reception event xr. Consider
the intermediate complex event given by13

z = (α′n̂, τ ), where τ = te + ζe (77)

is the emission time te plus the complex travel time ζe from xe to αn̂. Define the Gaussian
pulsed-beam propagator from z to xr by

P̃d(xr − z) = g̃d (tr − τ − ζr)

ζr

= g̃d (t − ζ )

ζr

, t = tr − te, ζ = ζr + ζe. (78)

This represents the complex wave amplitude radiated by α′n̂ at the complex time τ and
received at xr at time tr. Thus, (73) reads

P̃d(xr − xe) = α2

4π
∂α′α

∫
dn̂P̃d(xr − z)

1

ζe

. (79)

The general Gaussianized solution Fd(xr) in (62) is therefore given by

Fd(xr) = 2Re F̃d(xr), where

F̃d(xr) = α2

4π
∂α′α

∫
dn̂

∫
dxeP̃d(xr − z)

�(xe)

ζe

.
(80)

The name ‘Gaussian pulsed-beam propagator’ will be justified in section 6. Pulsed-beam
representations of general solutions will be given in section 9.

13 Recall that ζe = ζe(α) and ζr = ζr (α
′) and we set α′ = α after applying ∂α′α .
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Figure 10. The factor ζ−1
e in (79) represents the reception amplitude at αn̂ due to the attenuation

suffered in propagating from xe to αn̂, and P̃d (xr −z) represents the propagation of a pulsed beam
from the disk D(αn̂) to xr .

6. Pulsed-beam Huygens wavelets

We now show that P̃d(xr − z) is indeed a pulsed beam radiated by D(α′n̂) which propagates
along n̂, with the propagation along −n̂ suppressed by g̃d as in figure 8. The factor ζ−1

e

represents a complex attenuation suffered by the spherical wave emitted by the point source
at xe while propagating to αn̂. Thus we have a picture, shown in figure 10, of a spherical
wave emitted at xe and received at αn̂ with ‘reception amplitude’ ζ−1

e , then re-radiated
from α′n̂ as a pulsed beam and finally received at xr .14 The idea of analytically continued
fields as reception amplitudes by complex-source disks will be explained in more detail in
section 10.

By (78),

P̃d(xr − z) = g̃d(t − ζ )

ζr

= g̃d(t − ξ + iη)

ζr

. (81)

The properties established for g̃d show that the magnitude of P̃d(xr − z) is an increasing
function of η that attains its greatest values in the frontal zone S+

R nearest to xr ; see figure 5.
Some insight can be gained by noting that

gd(t − ζ ) = gd(t − ξ) eη2/d2
e−2iη(t−ξ)/d2

and expanding

P̃d(xr − z) = ζ−1
r H̃d(η − i(t − ξ)) eη2/d2

gd(t − ξ) e−2iη(t−ξ)/d2
. (82)

• At a given time t, the factor gd(t − ξ) ensures that P̃d(xr − z) is concentrated on a shell of
thickness ∼2d around the surface ξ = t . P̃d has significant values only when t is in the
range of ξ , which varies with n̂ ∈ S2 over a positive interval containing the line of sight
time r = |xr − xe|, the minimum time required to travel from xe to xr at speed c = 1. If
instead we vary xr = (xr , tr ) but fix xe and n̂, this means that the oblate spheroid given
by

Oξr
= Ot−ξe

is a wavefront of P̃d(xr − z) expanding with t = tr − te. This gives a direct meaning to
ξr : it is a variable whose level surfaces are wavefronts.

14 We are ignoring the derivatives ∂α′α , so this interpretation is somewhat schematic.
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• From the behavior of g̃d , it follows that the factor H̃d(η − i(t − ξ)) eη2/d2
in (82) is an

increasing function of η that boosts the incoming wave when η > 0 while suppressing it
when η < 0.

• Due to the factor e−2iη(t−ξ)/d2
, P̃d(xr − z) oscillates at the compression frequency

ωd(η) = 2η

d2
, (83)

which depends on xr for a given n̂ and on n̂ for a given xr . This is perturbed slightly by
the phase of H̃d(η − i(t − ξ)).

By interpreting every factor in (82), we have thus understood P̃d(xr − z) as a pulsed
beam with wavefronts Oξr

propagating along the semi-hyperboloid Hηr
at the compression

frequency ωd .
Consider the limit of (79) as a, a′ → 0:

P̃d(xr − xe) = R2

4π
∂R′R

∫
dn̂P̃d(xr − x)

1

re

,

where x = (R′n̂, te + re) is a reception event on SR′ at the arrival time te + re of a spherical
wave radiated from xe at te. As a function of xr, P̃d(xr − x) is the positive-frequency part of a
real Huygens wavelet emitted from x.15 By complexifying the sphere, we have deformed the
original spherical Huygens wavelets to pulsed beams (78):

P̃d(xr − x) → P̃d(xr − z).

This deformation acts on space so that spheres become oblate spheroids and cones become
semi-hyperboloids, as in (16). In the process of being deformed, the spherical Huygens
wavelets are compressed in the forward direction and stretched in the backward direction16.
Being complex, the compression introduces a phase which gives a measure of its strength.
This is why we call ωd the ‘compression frequency.’ As expected,

a, a′ → 0 ⇒ η → 0 ⇒ ωd → 0.

The time-domain radiation pattern of a radiation field F(x, t) with cylindrical symmetry is,
by definition [HY99], the function F(θ, t) satisfying the far-field relation

F(x, t) ∼ F(θ, t − r)

r
.

To compute the radiation pattern of P̃d(xr − z) relative to the coordinate system of the disk
D(α′n̂), assume the observer is far from the disk17. Taking α′ = α for simplicity, (23) gives

rr � a ⇒ ξr ∼ rr , ηr ∼ ar̂r · n̂ ≡ a cos θr ,

so that

ξ ∼ rr + ξe, η ∼ a cos θr − ηe.

15 Although Pd(xr − x) = 2 Re P̃d (xr − x) is not a wave because gd(t − r) does not oscillate, applying the derivative
∂α′α gives it some oscillation. For example,

∂αgd(t − ζ ) = −ζ ′
e∂t gd (t − ζ ) = 2ζ ′

e

d2
(t − ζ )gd (t − ζ )

is a one-cycle wave.
16 In a certain sense, they are Doppler scaled positively in the forward direction and negatively in the backward
direction [K94].
17 Since we are keeping n̂ fixed but varying xr , it is unnecessary to assume that rr � R. Only the relative vector
rr = xr − Rn̂ enters the above discussion.
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Figure 11. Peak-time radiation patterns of P̃d (xr − z) for d = 1, 2 and a = 5, 50. In each case,
we have plotted the beams with the weakest pattern (ηe = a) and the strongest pattern (ηe = γ0a).
For a = 5 and d = 1, the weakest pattern is so weak that it cannot be seen.

The factor ζ−1
r in (78) can be approximated by r−1

r since rr � a and ξe � re < 2a. Thus,

P̃d(xr − z) ∼ g̃d(t
′ − rr + i(a cos θr − ηe))

rr

, where t ′ = t − ξe.

Hence the radiation pattern of P̃d(xr − z) is

F(θr , t) = g̃d(t
′ + i(a cos θr − ηe)). (84)

The peak radiation time is t ′ = 0, when t = ξe is the arrival time at D(αn̂) of the emitted
wave. Figure 11 shows polar plots of the peak-time radiation patterns for two values of a in
the two extreme cases with

ηe = γ0a and ηe = a,

where

γ0 = lim
|xe|→R

γ =
√

1 − R2

R2 + a2
= a√

R2 + a2
< 1

as in (20). This lower bound applies to every source supported in SR.
Since |g̃d(t + is)| is an increasing function of s, the upper bound ηe = a is expected to

produce a weaker pattern than the lower bound ηe = γ0a, as already discussed beneath (48).
This is borne out in figure 11, where the pattern with ηe = a for a = 5 and d = 1 is so
weak that it is invisible. On the other hand for a = 50, the disk is so large as to dwarf the
sphere. Since γ0 ≈ 0.98 in this case, there is not a great difference between the lower and
upper bounds of ηe. This is the reason why both patterns are visible in the lower figures, and
why both are much weaker than the patterns with a = 5 and ηe = γ0a.

We have thus established (79) as a pulsed-beam representation of P̃d(xr − xe). Since the
pulsed beams P̃d(xr − z) are deformations of Huygens’ spherical wavelets, it is reasonable
to call them pulsed-beam Huygens wavelets. By taking the real part and convolving with
a general source �, as in (62), we obtain a pulsed-beam representation of the Gaussianized
version Fd(x) of any radiation field F(x).

22



J. Phys. A: Math. Theor. 42 (2009) 475403 T Hansen and G Kaiser

7. Some remarks

(1) The radiation patterns of extended sources generally have sidelobes, which are interference
patterns between parts of the wave arriving from different parts of the source. Sidelobes
of beams often stray widely from the intended direction of propagation, causing problems
in applications such as communications, remote sensing and radar [S98]. However, note
that the radiation pattern (84) is real at the peak time t ′ = 0 and it decays monotonically
with increasing θr , as confirmed by figure 11. It therefore has no sidelobes, and that makes
it potentially very useful. If we include the time-dependence around t ′ = 0, the radiation
pattern acquires a phase factor e−iωd t ′ and 2 ReF(θr , t), the radiation pattern of Pd(xr −z),
acquires sidelobes. But these are confined to the narrow envelope of 2|F(θr , t)| and do
not cause the usual problems.

(2) To fully justify the name ‘pulsed-beam propagator’, consider P̃d(xr − z) as a function of
xr with z fixed. It is singular on the branch cut D(α′n̂) of ζr(α

′) and analytic elsewhere,
hence

xr /∈ D(α′n̂) ⇒ �r P̃d(xr − z) = 0,

where �r is the wave operator with respect to xr. P̃d(xr −z) is therefore the wave radiated
by the disk D(α′n̂). The precise source of P̃d(xr − z) is a generalized function δ̃d (xr − z)

supported on xr ∈ D(α′n̂); see equation (107) in section 10.
(3) Taking the complex conjugate of (73) and substituting α, α′ → α∗, α′∗ (which is permitted

since the left side is independent of α and α′ and the domain (32) is symmetric under
conjugation) gives the negative-frequency component in the form

g̃d(t − r)∗

r
= α2

4π
∂α′α

∫
dn̂

ζrζe

g̃d(t − ζ ∗)∗, (85)

where we have used the reality conditions (18)

ζe(α
∗)∗ = ζe(α), ζr(α

′∗)∗ = ζr(α
′).

Thus, g̃d (τ ) satisfies the reality condition

g̃d(τ
∗)∗ = g̃d(τ ),

which also follows directly from (64). Adding (73) and (85) gives an alternative form of
the analytic Huygens relation18

gd(t − r)

r
= α2

4π
∂α′α

∫
dn̂

ζrζe

gd(t − ζ ), (86)

which is simpler than (74) as it does not split up the positive and negative frequencies.
However, we find that while (86) is numerically valid, it does not lead to a compressed
representation of radiation fields. The problem is the substitutions α → α∗, α′ → α′∗.
For α = R + ia with a > 0,

α∗n̂ = Rn̂ − ian̂. (87)

Hence the disk D(α∗), while still tangent to Rn̂, radiates a pulsed beam along −n̂,
i.e. to the interior of the sphere. Eventually, this beam leaves the sphere and continues
to propagate, weakened, in the direction of −n̂, but this is clearly an inefficient way
to represent radiation. Although (86) is mathematically correct in the sense that the
integral on the right converges absolutely to P̃d(xr − xe), this inefficiency shows up in

18 Equation (87) can also be obtained directly from (49) with ĝd (ω) = e−d2ω2/4.
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the appearance of very large numbers which spoil the compression and easily overwhelm
computational software, thus introducing huge errors; see the discussion at the end of
section 11.

(4) In view of the previous remark, we can say that the positive-frequency part of (49) is
‘good’ while its negative-frequency part is ‘bad’. The situation would be reversed for the
interior problem, where a source is given outside of SR and we seek to represent the field
inside SR as a superposition of pulsed beams. The pulsed-beam analysis and synthesis of
interior fields is very similar to that of exterior fields and will be treated elsewhere.

(5) The pulsed-beam representation (80) of general radiation fields suggests an important
application: given a receiver at xr , the most significant contributions are expected to
come from disks radiating approximately in the direction of xr , whose centers Rn̂ are in
the frontal zone S+

R . That is, by using only the ‘relevant’ wavelets propagating toward a
given observer, we obtain a compressed representation of Fd(xr). This is illustrated by a
numerical example in section 11.

8. Huygens reproducing relation for pulsed beams

The time-domain version (79) of the analytic Huygens principle treats emission and reception
asymmetrically: propagation from xe to z is represented by ζ−1

e , whereas propagation from z

to xr is represented by P̃d(xr − z). In this section, we construct a more complete picture of this
process which has a detailed and appealing physical interpretation. For this we shall need to
Gaussianize both the emission time te and the reception time tr. Thus let de and dr be Gaussian
duration parameters for te and tr and let

d =
√

d2
e + d2

r ,

which is the duration parameter for the entire transmission process. Let

zα = (αn̂, τ ), zα′ = (α′n̂, τ ), where τ = t + is (88)

is a free complex time variable. When τ = te + ζe, i.e. t = te + ξe and s = ηe, (88) reduces to
(77). The propagations from xe to zα and zα′ to xr are governed by

P̃de
(zα − xe) = g̃de

(τ − te − ζe)

ζe

P̃dr
(xr − zα′) = g̃dr

(tr − τ − ζr)

ζr

with

g̃de
(τ − te − ζe) = 1

2π

∫ ∞

0
dω e−iω(t−te−ζe+is) e−d2

e ω2/4

g̃dr
(tr − τ − ζr) = 1

2π

∫ ∞

0
dω e−iω(tr−t−ζr−is) e−d2

r ω2/4.

Applying the Fourier transform in t ′ = t − te to the first equation and in t ′′ = tr − t to the
second equation gives∫ ∞

−∞
dt ′ eiωt ′ g̃de

(t ′ − ζe + is) = H(ω) eiω(ζe−is) e−d2
e ω2/4

∫ ∞

−∞
dt ′′ eiωt ′′ g̃dr

(t ′′ − ζr − is) = H(ω) eiω(ζr +is) e−d2
r ω2/4.

(89)
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Multiplying (37) by H(ω) e−d2ω2/4 = H(ω)2 e−d2ω2/4 gives

H(ω)
eiωr

r
e−d2ω2/4 = α2

4π
∂α′α

∫
dn̂

[
H(ω)

eiωζr e−d2
r ω2/4

ζr

][
H(ω)

eiωζe e−d2
e ω2/4

ζe

]

= α2

4π
∂α′α

∫
dn̂

[
H(ω)

eiω(ζr +is) e−d2
r ω2/4

ζr

][
H(ω)

eiω(ζe−is) e−d2
e ω2/4

ζe

]
.

Taking the inverse Fourier transform and writing the time variable as tr − te gives

g̃d(tr − te − r)

r
= α2

4π
∂α′α

∫
dn̂

∫ ∞

−∞
dt

g̃dr
(tr − τ − ζr)

ζr

g̃de
(τ − te − ζe)

ζe

.

We have thus proved the following result.

Theorem 2. The Gaussian pulsed-beam propagator P̃d satisfies the following complex
spacetime Huygens reproducing relation:

P̃d(xr − xe) = α2

4π
∂α′α

∫
dn̂

∫ ∞

−∞
dt P̃dr

(xr − zα′)P̃de
(zα − xe). (90)

Remark 1. The complex spacetime 4-vector zα = (αn̂, t + is) represents a pulsed receiving
disk with a ‘Gaussian’ reception interval [t − de, t + de], which we denote by19

Dde
(zα) ≡ D(αn̂) × Ide

(t) ⊂ R
4, where Ide

(t) = [t − de, t + de]. (91)

Just as αn̂ ∈ C
3 represents the extended object D(αn̂) in space, so does z ∈ C

4 represent the
extended object Dde

(z) in spacetime. Similarly, zα′ represents a pulsed emitting disk

Ddr
(zα′) ≡ D(α′n̂) × Idr

(t). (92)

The relation between pulsed-beam emitters and receivers will be explained in greater detail in
section 10.

Remark 2. Equation (90) has a simple interpretation which, unlike (79), treats emission and
reception symmetrically. It states that the spherical wave emitted from the point source xe is
received by Dde

(zα), then immediately re-emitted by Ddr
(zα′), and finally received at xr. The

direct propagator P̃d(xr −xe) is recovered by integrating over all directions n̂ and intermediate
times t and then applying (α2/4π)∂α′α .

Remark 3. The integral over t can be viewed as a contour integral in τ , with the left side
independent of s due to analyticity. In fact, s is allowed to depend on n̂ (and even on t).
For a general emission source �e(xe) and receiving source �r(xr), where there are additional
integrations over xe and xr, s may also be allowed to depend on xe and xr.

Remark 4. The formal symmetry of (90) with respect to emission and reception is of more
than purely academic interest. To formulate pulsed-beam representations for the interior field
given an exterior source �, we must reverse the roles of xe and xr and use the advanced wave
propagator:

P(x) → P ′(x) = δ(t + r)

r
. (93)

Then (90) transforms to a pulsed-beam representation of the interior field but (79) fails to do
so. However, to get an efficient representation, we must also replace α, α′ by their complex

19 The role of s = Im τ will be explained below.
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conjugates, as discussed beneath (87), since we now want the pulsed beams to propagate
inward.

The properties of g̃d place some practical constraints on s. Let

τe = τ − te − ζe = t − te − ξe + i(s − ηe)

τr = tr − τ − ζr = tr − t − ξr + i(ηr − s),
(94)

so that

P̃de
(zα − xe) = g̃de

(τe)

ζe

and P̃dr
(xr − zα′) = g̃dr

(τr )

ζr

. (95)

The compression frequencies of the interior and exterior pulsed beams, defined as in (83), are

ωe = 2(s − ηe)

d2
e

, ωr = 2(ηr − s)

d2
r

, (96)

and the propagators in (90) will be very small unless

ωe > 0, ωr > 0, (97)

respectively. If both inequalities hold, they imply

ηe < s < ηr, (98)

which is consistent with η = ηr − ηe > 0. For example,

s = ηr + ηe

2
⇒ ωe = η

d2
e

and ωr = η

d2
r

. (99)

Since ηr > ηe for the dominant beams, the condition (97) is indeed satisfied by (99), showing
that (98) is sufficient as well as necessary. Although our proof of (90) is theoretically valid for
all choices of s, the computation can be expected to be inefficient for values of s violating (97).
For example, if s is large and positive, then P̃de

(zα − xe) is very large and P̃dr
(xr − zα′) is very

small. Conversely, choosing s large and negative makes P̃de
very small and P̃dr

very large.
Such choices introduce unnecessary noise into the computation, thus reducing its efficiency
and even causing errors when the machine capacity is exceeded, which does in fact occur
rapidly due to the exponential growth. Note that choosing s in the ‘good’ interval (98) makes
it dependent on n̂, which is permissible as explained above.

Numerical calculations confirm that all values of s in the interval [ηe, ηr ] give stable
results and that instabilities build up rapidly when s strays outside this interval.

9. Analytic Huygens relation for general solutions

Let �(x) = �(x, t) be a time-dependent source distribution bounded in space, and choose R
so that �(x, t) is supported in the open ball |x| < R at all times20. The radiated field F is
given by

F(x) =
∫

dxeP (x − xe)�(xe), (100)

where P is the retarded wave propagator (54). Now Gaussianize the emission time te by

�de
(xe, te) =

∫ ∞

−∞
dt ′egde

(te − t ′e)�(xe, t
′
e), de > 0.

20 This is always possible if � is compactly supported in time as well as space. If � is spatially bounded at all times
but does not remain in a bounded spatial region (for example, if it drifts at some velocity v �= 0), then a generalization
of (90) based on a spacetime version of Green’s second identity must be used.
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Then the wave arriving at x is (by the associativity of convolutions)

Fde
(x) =

∫
dxeP (x − xe)�de

(xe) =
∫

dxePde
(x − xe)�(xe), (101)

where Pde
is the Gaussian propagator (59). The spatial integral is over the support of � in the

interior of the sphere SR. Both sides of (101) can be continued analytically to the complex
spacetime points

x → zα = (αn̂, t + is),

since the integration over xe does not encounter any of the branch cuts of ζe =
√

(αn̂ − xe)2.
The analytic continuation of the positive-frequency part F̃de

(x) of (101) is

F̃de
(zα) =

∫
dxeP̃de

(zα − xe)�(xe). (102)

Convolving (90) with � gives

F̃d(xr) = α2

4π
∂α′α

∫
dn̂

∫
dt P̃dr

(xr − zα′)F̃de
(zα), (103)

where the reception time tr has also been Gaussianized by convolving with g̃dr
, so that the

total duration parameter is d = √
d2

e + d2
r .

The analytic Huygens relation (90) for propagators thus implies a pulsed-beam
representation for arbitrary solutions with spatially bounded sources. As shown in section 10,
the coefficient F̃de

(zα) in this superposition is the reception amplitude of the interior field Fde

by the pulsed disk Dde
(zα).

10. Pulsed-beam reception and emission

The purpose of this section is to justify the interpretation of F̃de
(zα) in (103) as the reception

amplitude of the field F by the pulsed disk Dde
(zα) defined in (91). By the wave equation

� F(x) = 4π�(x),

(102) can be written as a relation between F̃de
(zα) and F(xe),

F̃de
(zα) = 1

4π

∫
dxeP̃de

(zα − xe)�eF (xe), (104)

where �e is the wave operator in xe and

zα = (αn̂, τ ) = x + iy, x = (Rn̂, t), y = (an̂, s).

Integrating by parts twice gives21

F̃de
(zα) = 1

4π

∫
dxe �eP̃de

(zα − xe)F (xe). (105)

To make sense of this, note that in real spacetime (y → 0) we have (61)

�ePde
(x − xe) = 4πgde

(t − te)δ(x − xe) ≡ 4πδde
(x − xe), (106)

whose positive-frequency part is

�eP̃de
(x − xe) = 4πg̃de

(t − te)δ(x − xe) ≡ 4πδ̃de
(x − xe). (107)

21 P̃de (zα − xe) is singular when xe ∈ D(αn̂), so the right-hand side of (105) must be treated carefully. The wave
operator �e acts on P̃de (zα − xe) in a distributional sense, just as it acts on Pde (x − xe) to give 4πδde (x − xe). The
resulting distribution δ̃de can be computed rigorously using the methods developed in [K0, K3, K4, K5, D8] and will
be studied in detail elsewhere. Here we explain the main ideas in an intuitive and informal way.
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We now define the source distribution δ̃de
(zα −xe) of P̃de

(zα −xe) by extending this to complex
spacetime:

4πδ̃de
(zα − xe) ≡ �eP̃de

(zα − xe). (108)

Since P̃de
(zα − xe) is analytic whenever xe /∈ D(αn̂), it follows from (106) that

�e P̃de
(zα−xe) = 0 at such xe. Hence, the distribution δ̃de

(zα−xe) is supported in xe ∈ D(αn̂)

at all times. It is also localized in a ‘Gaussian’ sense in time around the interval Ide
(t); thus,

it is effectively localized in the pulsed disk xe ∈ Dde
(zα).

In other words, the wave operator �e ignores all the analytic behavior of P̃de
(zα −xe) and

nails down its singular behavior, consisting of a discontinuity across the branch cut D(αn̂)

and infinity along the branch circle ∂D(αn̂). All this is possible only in the distributional
sense. Combining (105) and (108) gives

F̃de
(zα) =

∫
dxeδ̃de

(zα − xe)F (xe), (109)

which is the analytic deformation of F. Equation (109) shows that F̃de
(zα) is the reception

amplitude of F(xe) by the receiving source δ̃de
(zα − xe), confirming our claim.

Remark 1. The distribution δ̃de
includes a dipole layer, represented by a first-order differential

operator acting on F(xe) [K0, K3]. Consequently, the right-hand side of (109) contains the
values of both F and its partial derivatives.

11. Compressed representations of radiation fields

We now demonstrate that the computational properties of the Huygens representation depend
strongly on the disk radius a and there can be a significant advantage to choosing a complex
sphere over a real sphere in numerical calculations.

Throughout this section, the source is at xe = (0, 0, 2.5) and has Gaussian time
dependence gd(t) with d = 0.3

√
2. The reception point is in the far zone on the positive x-axis.

We consider three spheres with R = 10 and disk radii a = 0, 5, 50. For a = 0, the sphere is
real and the pulsed-beam representation reduces to the classical Huygens representation.

Let

Iα
d (n̂, t) = 2Re

{
α2

4πζrζe

[
ζ ′
e

ζe

− ζ ′
r

ζr

+ (ζ ′
e − ζ ′

r )∂t

]
g̃d(t − ζ )

}
, ζ = ζr + ζe, (110)

where the dependence on xe and xr is implicit and ∂t g̃d(t − ζ ) is given by (76). Then (75)
reads

Pd(x, t) = 2Re P̃d(x, t) =
∫

dn̂Iα
d (n̂, t), (x, t) = xr − xe, r = |x|. (111)

Figure 12 shows Iα
d evaluated at the peak time t = r , where Pd(x, t) attains its maximum

value gd(0)/r . The top plot shows that Iα
d for the real sphere is significantly nonzero only

on a ring centered on the line of sight point from xe to xr . We can explain this behavior as
follows: for a = 0,

ζe = |Rn̂ − xe| ≡ re and ζr = |xr − Rn̂| ≡ rr

satisfy the triangle inequality

rr + re � r ≡ |xr − xe|,
with equality if and only if Rn̂ is the line-of-sight point. Now

g̃d (r − ζ ) = H̃d(−i(r − rr − re))gd(r − rr − re)
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Figure 12. Magnitudes of Iα
d with R = 10 at the peak time t = r and a = 0 (top), a = 5 (middle)

and a = 50 (bottom). The emission point is xe = (0, 0, 2.5) and the reception point is in the far
zone (|xr | � |α|) on the positive x-axis, outside the figure. The line of sight from xe to xr is
indicated by the long arrow.

decays as a Gaussian in r − rr − re perturbed by H̃d(−i(r − rr − re)). Combined with the
effect of the derivatives coming from ∂α′α , this perturbation displaces the maximum from the
line of sight (rr + re = r) to a small circle centered at the line-of-sight point. The derivatives
cause Iα

d to vanish at the line-of-sight point and oscillate near the circle, thus creating the ring
pattern seen in figure 12.

For the two complex spheres in the middle and bottom plots, g̃d (t − ζ ) suppresses the
points Rn̂ with ηr � ηe and boosts those with ηr > ηe in the frontal zone S+

R of (47).
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Figure 13. A spherical cap with cap angle β centered on the x-axis.

Simultaneously gd(r − ξ) suppresses points with |r − ξ | > d, and the winners of this tug
of war are the points in the small spot centered at Rx̂r in the middle and bottom plots of
figure 12. This spot becomes more and more concentrated near Rx̂r with increasing a.

It is important to note that Iα
d for large a is concentrated around the point Rx̂r nearest to

the receiver regardless of the location of the emission point. This means that Iα
d for large a

would remain concentrated near Rx̂r , as in figure 12, even if we replaced the point source at
xr with an arbitrary volume source �(xe) supported throughout the interior of SR. This can be
understood by noting that a disk source becomes more directive with increasing radius; hence,
fewer disks are required to achieve a given accuracy.

To illustrate the advantages of using complex spheres with large value of a, we investigate
the accuracy of the field at xr obtained by including only the pulsed beams radiated from a
spherical cap centered around Rx̂r with maximum angle β, as in figure 13. For the parameter
values under consideration, β0 = 15◦ represents a cap where the line of sight from xe to xr

just grazes the upper edge of the cap. We compute the maximum error over all time of the
field at xr , relative to the maximum value gd(0)/r . This calculation is designed to simulate
the realistic situation where the time dependence of the source is unknown and the source
may emit a series of pulses that are spread out over time. In particular, the computed error
bounds also hold for time-harmonic fields. Figure 14 shows this maximum error as a function
of β � β0 for the three values of a. A dramatic error reduction is obtained by increasing a.
For example, the errors ε(a) for β = 45◦ are

ε(0) = 27.9%, ε(5) = 8.3%, ε(50) = 1.5%,

a reduction of nearly 20:1 when using the pulsed-beam representation with a = 50 compared
to the real Huygens representation! This has important practical implications in numerical
calculations, where a certain error level must be often achieved. For example, assume that the
error of the field at the reception point must be less than 2%. Then the required cap angles
β(a) are

β(0) = 152◦, β(5) = 89◦, β(50) = 38◦.

Hence, with a = 50, we need to include pulsed-beam wavelets over just 11% of the sphere,
whereas a = 0 would require spherical wavelets over 94% of the sphere.

Remark 2. Consider the efficiency of the ‘alternate’ expression using (86), whose negative-
frequency component was obtained by letting α → α∗ and α′ → α′∗ in the conjugate
pulsed-beam expansion (75) of P̃d(x, t)∗. This gives the expression

Pd(x, t) = α2

4π

∫
dn̂

ζrζe

[
ζ ′
e

ζe

− ζ ′
r

ζr

+ (ζ ′
e − ζ ′

r )∂t

]
gd(t − ζ ) ≡

∫
dn̂J α

d (n̂, t), (112)
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Figure 14. Compression: The maximum error at a far-zone reception point on the positive x-axis
as a function of the cap angle β. The emission point is on the z-axis at z = 2.5. The three spheres
have R = 10 with disk radii a = 0, a = 5 and a = 50.

where g̃d has been replaced by gd in the integrand. As noted under (86), this means that
the negative-frequency pulsed beams propagate along −n̂ instead of n̂, thus traversing the
sphere and spoiling the efficiency of (74). To demonstrate the enormous difference between
(111) and (112), consider again the complex sphere with α = 10 + 50i, xe = (0, 0, 2.5) and
xr = (200, 0, 0) in the far zone. Since (112) does not have a factor like H̃d , there will be
significant contributions from the backside of the sphere. In particular, consider

n̂ = −x̂r = (−1, 0, 0) ⇒ ζ = ζr + ζe = 220.01 + 99.94i.

Choosing d = 0.3
√

2 as before and t = ξ = 220.01, we find

gd(t − ζ ) = gd(−99.94i) = 1.33 e55 489 ∼ 1025 000.

The contribution from the back point −x̂r in (112) is seen astronomical! By comparison,
the counterpart of gd(−99.94i) in (111) is

g̃d (−99.94i) = 0.001 59.

This illustrates that (111) and (112) are on opposite sides of the computational efficiency
spectrum.

Figure 14 suggests that the compression keeps increasing with a, and it is natural to
wonder if there is an ‘optimal’ value of a beyond which the benefits of further increase will
diminish. Asymptotic analysis in the far zone shows that as a increases, g̃d(t − ζ ) approaches
zero everywhere on the sphere except at n̂ = x̂r , where its magnitude approaches |g̃d(t − r)|.
Moreover, g̃d (t − ζ ) decays smoothly without oscillations away from n̂ = x̂r . Hence, there
is indeed no limit to how small the cap angle β can be for a given error limit. However,
as a increases, the sampling rate used in the computation of the integral (111) must also be
increased. We shall investigate the numerical consequences of using large values of a more
fully in future work.
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